
Mount() 1
ID: 783-BSI | Version: 2 | Date: 5/16/08 2:39:27 PM

Mount()
Vulnerable to TOCTOU issues

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-02

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 9284 bytes

Attack Category • Path spoofing or confusion problem

Vulnerability Category • Indeterminate File/Path

• TOCTOU - Time of Check, Time of Use

Software Context • File Path Management

Location • sys/mount.h

Description Mount() is used to mount filesystems or directory
structures to a specified directory.

Because mount must be run as a superuser, there
are inherent security concerns such as time-of-
check, time-of-use (TOCTOU). Any programs
using mount() should be well scrutinized and run
with the lowest privileges possible. It will operate
on symbolic links which further exacerbates the
problem.

The risks here are that an attacker could mount a
filesystem that was not intended to be mounted
which could possibly lead to a disclosure or integrity
violation of sensitive information.

APIs Function Name Comments

mount()

Method of Attack The key issue with respect to TOCTOU
vulnerabilities is that programs make assumptions
about atomicity of actions. It is assumed that
checking the state or identity of a targeted resource
followed by an action on that resource is all one
action. In reality, there is a period of time between
the check and the use that allows either an attacker to
intentionally or another interleaved process or thread
to unintentionally change the state of the targeted
resource and yield unexpected and undesired results.

An attacker would take a program that uses mount()
insecurely (that is, it operates on a relative path or
an absolute path (which could be a symbolic link)
that the attacker can control) and mount a filesystem

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html


Mount() 2
ID: 783-BSI | Version: 2 | Date: 5/16/08 2:39:27 PM

or directory of his or here choice, possibly to a
target of his or her choice. This rule focuses on the
vulnerability of mounting an arbitrary source to a
target but it easily could be a fixed source that is
mounted to an arbitrary target.

Exception Criteria Iif mount is run on absolute file paths are that are not
in control of the currently running user, this problem
should be mitigated.

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

This solution
is applicable if
the application
can be adapted
to use absolute
file paths,
can check the
access on these
file paths, and
can create
symbolic and
hard links in
place of using
mount.

Use hard links
and symbolic
links when
possible to graft
one directory
structure
to another;
mount is not
necessary.

Do not mount
sources user-
specified
sources or
those that the
current user has
control over
(i.e. symbolic
links, relative
file paths) and
always mount
absolute file
paths.

This solution
will reduce the
liklihood of a
program using
mount() being
tricked into
mounting an
unintended file-
system.

This solution
is applicable if
portions of the
program can
be run without
super-user
access.

Set the effective
user ID (euid)
and group id
(egid) to that
of the real
user except
when mount()
needs to be
performed.

This will reduce
the exposure of
the application
to abuses of
the super-user
privilege by
only using it
when absolutely
necessary.

Generally
applicable.

The most basic
advice for
TOCTOU
vulnerabilities
is to not
perform a check
before the use.
This does not
resolve the

Does not
resolve the
underlying
vulnerability
but limits the
false sense of
security given
by the check.



Mount() 3
ID: 783-BSI | Version: 2 | Date: 5/16/08 2:39:27 PM

underlying
issue of the
execution of
a function on
a resource
whose state and
identity cannot
be assured, but
it does help
to limit the
false sense of
security given
by the check.

Generally
applicable.

Limit the
interleaving
of operations
on resources
from multiple
processes.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Generally
applicable.

Limit the spread
of time (cycles)
between the
check and use
of a resource.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Generally
applicable.

Recheck the
resource after
the use call
to verify that
the action
was taken
appropriately.

Effective in
some cases.

Signature Details int mount(const char *source, const char *target ,
const char *filesystemtype, unsigned long
mountflags , const void *data);

Examples of Incorrect Code /* Improper use of mount on a
relative path (and it could be a
symbolic link!)
* fs_type is set to the
filesystem type to be expected
* mount_flags is set to the flags
to be used in this situation
* mount_params is set to the
parameters for the specific file
system
*/



Mount() 4
ID: 783-BSI | Version: 2 | Date: 5/16/08 2:39:27 PM

mount(~/source, /mnt/
target, fs_type, mount_flags,
mount_params);

/* Improper use of mount on an
absolute file path that the user
controls
* fs_type is set to the
filesystem type to be expected
* mount_flags is set to the flags
to be used in this situation
* mount_params is set to the
parameters for the specific file
system
*/
mount(/home/current_user_name/
source, /mnt/target, fs_type,
mount_flags, mount_params);

/* Improper use of super-user
privileges to write to a file in
the current directory (relative)
* The buffer data and it's
length, data_len, have already
been specified.
*/
FILE *fp = fopen("log.txt", "w");
fwrite(data, 1, data_len, fp);
fclose(fp);

/* fs_type is set to the
filesystem type to be expected
* mount_flags is set to the flags
to be used in this situation
* mount_params is set to the
parameters for the specific file
system
*/
mount(~/source, /mnt/
target, fs_type, mount_flags,
mount_params);

Examples of Corrected Code /* Proper use of the mount
command:
* We will illustrate dropping
privileges until we need our
super-user privileges and the
proper specification of the mount
command.*/

//Get the effective user of the
running process. This will be the
program's user or group owner if
setuid or setgid is used.
uid_t init_uid = geteuid();



Mount() 5
ID: 783-BSI | Version: 2 | Date: 5/16/08 2:39:27 PM

gid_t init_gid = getegid();

//Drop to the privileges of the
user who is runnig the process.
seteuid(getuid());
setegid(getgid());

//Do unprivileged tasks...

//Jump back up to a privileged
effective user
seteuid(init_uid);
setegid(init_gid);

/* A absolute path to the source
is specified and it is not
controlled by the user (at least
not by default on most modern
linux systems.
* The filesystem type is
specified. If an attacker were to
try to mount a file system that
was of a different type, it would
fail.
* The filesystem is loaded with
very restrictive permissions.
*/
if (mount(/dev/hda1, /mnt/target,
"ext3", MS_NOEXEC | MS_NOSUID |
MS_RDONLY, NULL) < 0)
return -1; //Return -1 on error.

//Drop to the privileges of the
user who is runnig the process.
seteuid(getuid());
setegid(getgid());

//Do more unprivileged tasks.

Source References • ITS4 Source Code Vulnerability Scanning Tool
2

• A vague reference3

• The C mount() functions4

Recommended Resource

Discriminant Set Operating System • UNIX (All)

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

http://www.cigital.com/its4/
http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-95-09.pdf
http://maconlinux.net/linux-man-pages/en/mount.2.html


Mount() 6
ID: 783-BSI | Version: 2 | Date: 5/16/08 2:39:27 PM

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

